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ABSTRACT

The most urgent public health problem today is to devise effective strategies
« minimize tiie destructior: caused by the AIDS epidemic. This complex problem
will involve medicai advances and new public nealth and education initiatives.
Mathematical models based on the underlying transmission mechanisms of the AIDS
virus can help the medical/scientific community understand and antiapate its
spread in different populations and evaluate the potential efiectiveness of
different approaches for bringing the epidemic under control Befnre we can use
models to predict the future, we must carefully test them against the past snread of
the infection and for sensitivity to parameter changes. The long and extremely
variable incubation period and the low probability of transmitting the AIDS virus in
a sin;jle contact imply that population structure and vanations in infecti«ity both
play an important role in its spread. This structure occurs because of differences
between people in numbers of sexual partners and th-* use of intravenous drugs and
because of the way in which people mx among aye, ¢thiic, and social groups. We
use a simplified approach to investigate the effects of variation 1n 1incubation
penods and infectivity specific to the AIDS virus and we compare o model of random
partner choices with a model in which partners both come from sinular behavior
groups
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I. INTRODUCTION

Most current predictions of the acquired immunodeficiency syndrome (AIDS)
epidemic are based on simple exponential or polynomial extrapolations of current
trends. These curve-fitting methods cannot be used reliably for long periods ¢ f
time, nor can they provide understanding of the interactions that lead to the
epidemic’s spread. During the long asymptomatic period after infection with the
human immunodeficiency virus (HIV) that causes AIDS, changes in the environment
of viral transmission occur continuously, causing complex interactions. Only models
that are founded on the transmission mechanisms of HIV can show how the early
infection of high-risk groups, behavioral changes, and future medical advances such
as treatments and vaccines will affect the future ccurse of this epidemic. The effects
will be highly nonlinear functions of the parameter values and at times may even
iead to changes that are counter to both intuition and simple extrapolated
predictions. The mathematical model predictions of these counterintuitive
mechanisms may greatly improve our understanding of the obhservations.

In developing the mathematical models, we are creating a logical structure
that orgenizes existing information on AlDy into a coherent framework and
suggests new information that must be collected about a wide variety of topic,s
such as drug use, sexual activity, and the interactions between HIV and the immune
system. Models can provide qualitative insights, even when data are lacking, and
can help prioritize data collection.

We have already gained some qualitative insights from our modeling work.
For example, we have seen that the amount of sexual contact and needle-sharing
between high-activity and lower-activity individuals determines both who gets
infected and the speed with which the epidemic progresses. If there is httle mixing
between these groups, then the individuals in high-rnisk groups are nearly all
infected before the infection moves into lower risk groups. However, If mixing 1s
large, many more lower-rist. individuals will be infected in the early stages of the
epidemic. The epidemic moves much faster when mixing is large because there is a
larger pool of 'ower risk individuals to feed it. In a model where paitners are
chosen randomly, irrcgardless of their partner change rate, the total number of
infected low-risk individuals quickly exceeds the number of infected high-risk
individuals. This result is contrary to experience and reflects the urgent need to
collect and analyze the information on mixing patterns to estimate critical model
parameters.



The probability of infection per contact is too poorly understood to use the
AIDS caseload data to distinguish between these mixing patterns. Our modeling
also indicates that, if the difference between male-to-female and female-to-male
infectivity is large, then the lower of these two infectivities will tend to determine
heterosexual spread, with epidemic patterns potentially different from that seen in
homosexuals and intravenous (IV-drug) users. This difference indicates that
collecting and analyzing information on infectivity should also be high priority.

The infertivity is significantly lower in the middle stage of HIV infection than
when end-stage disease (AIDS) approaches. Therefore, testing and counseling
programs that identify and persuade infected individuals to avoid infecting others
will be more effective than if the infectivity were constant. Models to predict the
role of testing and counseling must include the effects of variable infectivity.

Although it is unlikely that any model will nrovide accurate long-term
predictions of the numbers of AIDS cases, a model that is based on interactions that
lead to disease transmission could eventually allow investigators to answer many
questions. For examplc, one can assume increased condom use by people in a
targeted age group and region and then determine how much that increased use
will slow the local course of the epidemic. This predictive ability would then help
authorities decide if it is more effective to encourage condom use in that group
than to use another strategy, such as stressing the importance of having fewer
partners or reducing the incidence of other sexually transmitted diseases (STDs), to
lower the probability of infrction for some population groups. As another exainple,
a partially effective vaccine with potentially harmful side effects might be
developed. Somehow it must be ascertaiinied which persons should be vaccinated.
The model would be used to understand how vaccnating each group affects the
spread of the epidemic.

To prevent new infections, intervention strategies must focus on the groups
currently being infected, and those next at rick Although the most accessible and
dramatic data come from AIDS cases, these cases primarily represent infections that
occurred 4 or more years ago  To understand where infectiuns are occurrning today
is a aifficult task  Models can help in planming future seroprevalence studies and
intervention strategies by providing a consistent picture that ind'cates where the
epidemic front lines are hkely to be

As models are developed, they must be tested for consistency with the past
history of the epidemic  We cannot hope to predict the future before we can



explain the past. Much of the focus of this paper is, therefore, on understanding
past HIV spread in homosexual men.

Any inconsistencies between the data and the models need an explanation:
matching parameters so that the absolute numbers of AIDS cases are correct is not a
verification that a model is correct. Many different models can match these gross
data sets and forecast widely different futures. Pararneter estimates must lie within
ranges obtained by independent observations. Correlated residuals between the
fitted model predictions and AIDS data may give important clues to additional
mechanisms that models must incorporate. Data from seroprevalence and cohort
studies shouid also be consistent with the model’s predictions. For example, a
random-mixing moael leads to a fast early growth in infection in homosexual men
with 2-5 partners per year. This growth rate is inconsistent with the data from
testing blood samples obtained before 1982 (Darrow et al.,, 1987; Goedert et al.,
1984) and also with the Center for Disease Control (CDC) case-tracing study of the
first men with AIDS (Auerbach et al., 1984). On the other hand, in a model where
high-risk individuals primarily mix with others at high risk, then lower-risk groups
are not infected in the early stages. This model is consistent with the AIDS data and
agrees with the seropositivity studies. We plan to test the hypothesis that most
mixing was between men of similar risk behavior by analyzing the San Francisco
Hepatitis B data on behavior versus infection from 1978 to 1982.

Another use of models is to estimate unknown data based on the known facts.
For examnle, the past distribution of HIV infection can be estimated from the
current A|DS caseload and the distribution of times from infection to AIDS To
determine the consistency of the generated data requires a formal mathematical
model similar to the one we are designing. The available data can also be assessed
indirectly to determine their internal consistency by ieaving some data out,
generating est:tmates of the missing data based on one or more models, and then
comparing the two data sets.

The HIV that causes AIDS is primarily transmitted through sexual contact (man
woman, man-man), sharing of hypodermic needles, and exposure to infected biood
either perinatally or through blood transfusions. HIV 1s not transmitted by
nonsexual daily contacts, even though the virus ha- been isclated from almost every
body fluid (Fischl et al.,, 1987) The infection rnisk to an individual depends both on
the behavior of the individual and on the prevalence of infection in the groups with
which the individual has sexual contacts or shares needles This prevalence varies
between regions and age qroups, as well as between behavioral nsk groups An



individual is more likely to become infected if he or she has multiple sexual partners,
has sexual partners in a high-risk group; lives in a highly populated area; lives in the
New York City, Washington, DC, San Francisco, or Los Angeles areas; shares needles
when using drugs; is between 25 and 35 years of age, or has another STD.

A single model that tried to address all of the questions raised in this paper
would contain too many variables to be solved numerically on even the largest and
most advanced computers. Even if it were possible to solve the system, not encugh
is known about human behavior to supply the necessary information to the
program, nor would a deep understanding of the interactions of the transmission
network be gained by initially solving a large system. Instead, simplified submodels
must be developed to address specific questions. The assumptions behind these
models should be clear, including both what is being neglected that can probably
be neglected and what is neglected that is unrealistic. Studying families of simple
models will allow us to understand how different factors interact in the spreading
of the AIDS virus.

For example, to comprehend how precisely the infectivity profile
(infectiousness with time since infection) must be measured, one can look at the
sensitivity of a very simple model to variations in the profile. Such a model can lump
age groups and regions, but it cannot ignore all nonheterogeneit'es in sexual-
partner choices. On the other hand, if we wish to understand how age differences
may delay sureading the infection from one age group into another, then we
cannot ignore age-structured behavior. The behavior of simple models should be
carefully investigated to build a picture of interactions that will allow us to make
estimates that lead to simplifications in more global models.

For modeling purposes, the portion of the male and female population that
engages :n behaviors that put them at risk for HIV, namely, nonmonogomous sexual
contact and needle sharing drug use, 1s divided according to their risk behaviors and
the manne: by which they choose partners. Susceptiole persons are infected
through contacts with infected persons, and infected person; develop clinical AIDS
(such as Kaposi's sarcoma [KS] or opportunistic infections such as pneumocystis
pneumonia [PCP]) at a rate that depends on the length of time since HIV infection.
AIDS patients subsequently die at a rote that depends on the length of time since
AIDS developed and on the type of clinical manifestation (either KS or opportunistic
ifections). We assume that an infected person remains infected and infectious for
life This one-way migration of susceptibles to-infecteds s due to the chromosomal
integration of the proviral DNA inio the host cell



In the next three sections, we discuss many of the risk factors and aspects of
the AIDS virus that we foresee as being important to the epidemic and some that
will eventually be found to be unimportant. The future spread cf the virus in the
United States and Europe will most likely be through sexual contact and drug
needle-sharing. A model of the transmission pattern in Africa would require also
including blood transfusions and perhaps other factors.

In Section |V, we discuss the growth of AIDS cases in the United States to date.
The total number of cases has grown as time cubed, within a few percent. We use
an extrapolation of this cubic and estimates of the distribution of times ..om
infection to AIDS diagnaosis to estimate the growth in infecteds.

In Section V, we present simple models, which are chosen to allow
investigation of a particular set of questions about the epidemic that has occurred
so far in the United States. These questions include the sensitivity of models to the
variation in infectiousness as time since infection, the effect that saturation of risk
groups due to random or biased partner choice has on the shape of the epidemic,
and the importance of multiple contacts between partners. In Sections VI and Vil we
discuss pararneter estimates and present numerical investigations of these models.

As we discuss the issues that are important for modelers to consider, we will be
providing a logical structure for the diverse data that researchers are collecting.
Also, new questions and insights will arise to guide investigators in directing their
research to add to the general understanding of this epidemic.
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li. POPULATION RISK STRUCTURE

In contrast to our current understanding of the transmission of malaria (Aron,
1988, Ross, 1911), measles (Dietz and Schenzle, 1985), rubelia (Anderson and May,
1985), rabies (Murray et al., 1987, and many other diseases (Anderson and May,
1982), little is known about modeling the behavior of STDs in the sexually active
community. To analyze the HIV transmission dynamics, the sexual activity and
reedle-sharing drug use of the susceptible population must first be understood and
modeled. These activities, about which little is known, pose formidable research
questions in themselves.

The risk group frora which a person chooses partners for sex or needle-sharing
is an important sccial question about which little is known. The married man who
has an affair with a married woman takes a different risk from one wheo solicits a
prostitute once a year. Both men may have the same number of new partners each
year, but they have chosen those partners in a very different manner.

Risk also depends on the infectiousness of each contact, which depends on the
type of contact, the use of protective measures, and where the infected person is in
the course of the infection. It is perhaps important to note that the infectiousness
of HIV is sufficiently low that the spouse of an infected person may not become
infected until about a year before AIDS develops (Fischl et al.,, 1987; Goedert, et al.,
1987b), so that a person may not necessarily become infected if his’ther long-term
partner does.

some recent information on the amount an ' type of drug abuse in the United
States is available from the National Survey on Drug Abuse conducted by the
National Institute on Drug Abuse. On the other hand, no large-scale studies
specifically aimed at sexual hehavior have been conducted in the United States since
the Kinsey Studies more than 3% years ago. However, a number of other studies,
such as fertility studies, have included some questions on sexual behavior or have
studied specific groups. Several ongoing efforts involve searching through these
studies for information relevant to HIV spread (John Gagnon at SUNY at Stony
Brook, Wendy Cain at the National Institute for Child Health and Human
Development [NICHD]). In addition, NICHD is designing and will implement a
nationwide survey of sexual behavior and needle-sharing behavior specifically
aimed at gathering information about the transmission of the AIDS virus.

Endemicity of the infection also plays a major rcle. Once the infection
becomes endemic in a group of people, it may spread in that group fairly rapidly,
whereas another group that has few contacts with infected groups may remain
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protected for a long time. Age differences, physical clistance, ethnicity, and other
social groupings may all provide barriers to the spreacing of infection. Behaviors
also vary between different groups of people, leading to different spreading rates
in different groups.

The risk-group divisions we have identifiec as being of possible importance to
the spreading of this epidemic include the following:

a: age,

r: number of new male partners per year,

number of new female partners per year,
: sexual activity group,
: number of people with whom needles are shared per year,
: population density,
zone of the country,
: ethnicity or social group, and
cofactors.

Some of these (a,p,z,e) act as barriers to the spread of the disease. That is,
people of similar ages and ethnicity who are living in nearby geographicregions are
more likely to spread the virus amnng themselves than they are to other groups.
Other factors (r,5,9,d,c) determine how the spreading occurs within social groups.

noNTDTAOQA@ ¥V

The transmission of AIDS involves long time scales aid, therefore, members
are not frozen into a given risk group once they have entered it. This flow occurs
because behavior change: with agz, marital status, knowledge of infection,
changing social mores, and educational efforts and because of movement of people
between geographicregions. This flaw is an additional source of contact between
risk groups .

A. AGE

Age is important for a number of reasons. There is a distribution of ages at
which people become sexually active and presumably tend to migrate rirst into
more active groups and then into long-term relationships as they age. Drug use is
age dependent. The use of particular drugs, such as heroin, goes in and out of style
and is thus generational (R. Chaisson and A. Moss, UC San Francisco, personal
communication). There are natura! barriers to contacts between age groups so that
the infection will not spread between age groups as rapidly as within an age group.
Social groups, such as high school or college students, are age dependent. The
amount and type of traveling done also are age dependent. The number of
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children born with the HIV infection will depend on the number of infected women
who ar: having children, which varies with age. Death rates, health, and disease
progression (Wiley et al., 1987) are age dependent.

In regions where AIDS becomes a major problem, as it already has in central
Africa, this epidemic has the potential to daplete the productive age groups in the

short range and to entirely change the population’s age structure in the long run
(May et ai., 1988).

B. SEXUALACTIVITY

Risk from sexual activity depends on the probability of choosing an infected
partner as well as on the numbher ¢ nd type of contacts with an infected partner. The
probatility of choosing ai« infecter” partner depends not only on how many new
partners are chosen but also on the manner in which those partners are chosen.
There is a wide variation in the rates that sexually active peopie and needle-sharers
change partners (see Fig. 6.3 in Section VI.). A small core of Hiv-infected, very
sexually active people can drive the epidemic.

Most models for the transmission of venereal diseases (Hethcote and Yorke,
1984; Anderson et al, 1986) have assumed that all partners are picked at random
from the pool of available partners. This assumption leads to the proportionate-
mixing assumption that the pei year probability of someone with i partners per year
picking an infected partner with j partners per year is i1j-P,/Pr, where P, is the
number of infected peonle with ; partners per year and Pris the total number of
partners picked per year. These models also assume that the probabil.ty of infection
per partner is the same. However, it 1s clear that these assumptions are overly
simplistic.

in our models, we assume that an average probability of infection can be
assigned to each contact. This assumption may not be sufficiently accurate to
predict the spread of HIV and additional factors may need to be included in the
model. For example, the probaoility of infection might depend strongly upon the
strain of the virus on the health of the partners.

There is a tendency for people with fewer partners to have more contacts per
partner than do people with many partners. There is also a bias of like toward like,
so that people with few partners tend to choose partners who also have few
partners. Adding these biases into the Anderson et al. mode! leads to substantially
different predictions from their random-mixing model with equal risks.
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Another aspect of behavior is that most sexually active people, both
homosexual and heterosexual, move in and out of stable partnerships (Kolb, 1980).
They may go into the dating pool and have a number of short-term relationships
with a small number of contacts per person before forming a new partnership, or
they may go directly from one partnership to the next (with o/ without some
overlap). Sexual partnerships have a wide variation in their duration. The duration
of each partrership depends on the sexual-activity groups of the partners involved.
The more sexually active people in the dating group form shorter partnerships than
the less-active individuals. A similar dependency holds for the duration of
abstinence periods. The duraticn of the longer-term partnerships tends to increase
with age. A recent model for the spread of AIDS by Klaus Dietz {1988) incorporates
some of these flow ideas using survey data of the West Germany population.

Also, a fraction of the population maintains long-term relationships and then
has a certain number of outside partnerships. The risk to individu Jls from longer-
term relationships depends on the outside partners or the previous partners of their
mates. Some possible behavior classes are shown in Fig. 2.1.

Although the data are poor at this point, the infectiousness of a contact may
depend on the type of contact (man man, woman-man, man woinan, anal genital,
oral-genital). Infectiousness also depends on other cofactors such as venereal
diseases and the use of protective devices (condorns, nonoxynol 9). We need
estimates for the prevalence of these cofactors, how frequently protective devices
are used, and how much behavior can be influenced by factors such as education,
knowiedge that a partner or oneself is infected, and fear of infection Also,
individuals with higher risk behavior are more likely to seek testing and discover
their intection than are those involved only in low sk behavior As public
awareness increases and more people know they are infected, we speculate that the
resulting drift toward safer sexual practices will slow the spread of the virus

The infected spnuse studies (Fischi et ai, 1987) and the African epidemic
demonstrate that the virus can spread through a heterosexual network Growing
evidence suggests that the fast heterosexual spread in Africa s partly due to a hugh
prevalence of cotactors, such as genital ulcers caused by chanchroids, which may
greatly increase both infectiousness and susceptability  In the developed world,
such severe cufactors are virtually nonexistent However, other cofactors are
present, such as gonorrhea, syphilis, and herpes, that may increase transmission
rates less dramatically. Without data on infectiousness, with and without cofactors,
male-to -female and female to male, 1t s impossible to tell whether or not a self
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An individual who picks partners at random; most
partners also pick at random and have few
contacts/partner.

An individual who, when dating, has few partners and
few contacts /partner; most partners are also daters.

C=e->20->C=> 0O >

An individua! involved in medium-term relations with
a few partners who have similar behavior.

# Long-term relationship + affair.
Long-term relationship + random partners picked
from a high-activity class.

Example of a contact network along which HIV could
spread from a sexually active infected () to an
individual in a steady partnership (C).

Figure 2.1. Different individuals (indicated by circles) may have very different
sexual contacts (indicated by the lines).
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sustaining heterosexual epidemic will occur in the United States. The few current
heterosexual AIDS cases are primarily driven by the epidemic among homosexuals
and IV drug users. A slowly growing heterosexual epidemic could be masked by
cases due to contacts with these groups. It is unlikely that models can distinguish
between these two possibilities without estimates of transmission probabilities
from partner studies (e.g., Fischl et al., 1987, Padian et al., 1987).

Although approximately the same number of men as women are infected with
HIV in central Africa, and in some groups of military recruits in the United States
(Burke et al., 1986), this fact does not imply tnat the virus is transmitted with ecual
efficiency between men and women, even in the presence of cofactors (May and
Anderson, 1987). The numbers of partners that each has may also play a big role.
The infected women may have had, on the average, far fewer partners than the
infected men, but there may be a pool of infected prostitutes with whom many men
have contact. Also, the presence of other STDs may be a more important cofactor in
a heterosexual transmission network than in a homosexual network.

Consider HIV transmission through a simplified heterosexua! network, where
one male infects one female, who in turn infects another male,

BB,

Ma W oMW

and a simplified homosexual network, where each male infects one more and all are
assumed to engage with equa! frequency in both insertive and receptive anal
intercourse,

and where the transmission (infectivity) rates are

[r for man-to woman (receptive),

B3, for woman-to-man (insertive),

a, for man to man (receptive), and

a; for man to man (insertive).
This heterosexual transmission chain looks hke several resistors in series with
resistivities i, ' and [, . For the M W «M chain, the two “reustivities” add, qiving
an average per hnk resistivity of (5, ' + I ') and thus an average transmission rate
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per link of § = 2p,Bi/ (B, + Pi). For the homosexual chain the transmission routes
are in parallel and the average transmission rate per link is a = (ar + ;). Aslightly
more realistic model, where each person can have more than 2 partners, and for
which the average transmission rate is somewhat modified, is discussed in
Section V.A.

It, as some have proposed, in the absence of other cofactors such as STDs the
probability of keing infected during insertive intercourse is mucih less than in
receptive intercourse (that is, B << Br. 9i<< q), then the average transmission
rates would be f = 2 and a = a,. The heterosexual transmission rate would be
governed almost entirely by W—M, the insertive infectability, whereas homosexual
transmission would be driven by the faster receptive transmission rate. Thus, the
most effective strategies to slow the epidemic in the two transmission networks
might be quite different. For example, suppose that spermicides such as
nonouxcnol-9 were found to be mote effective in reducing f§; and a; than in reducaing
Br or ar. Under this scenario, the use of spermicides could have a dramatic effect on
the heterosexual spread but only a minor effect in the homosexual network where,
for example, condoms may be necessary to reduce both a, and q,.

Also, berause other STDs may significantly raise the insertive infectivity f3; from
a woman to a man, one of the most effective strategies of slowing the epidemic in
the heterosexua! network may be to launch a major campaign to reduce the
incidence of other STDs. The recent dramatic increase (approximately 29% per year)
of syphilis cases in the United States has been attributed by some to the transferring
of STD educational and treatment dollars to fight the AIDS epidemic. This transfer
may be a counterproductive approach and may result in a faster spreading
heterosexual epidemic. Once the relative infectivities are approximately known,
then the model will be able to give guidance in answering questions such as
whether it would be more effective to spend educational funds until, for example,
90% of the heterosexual contacts use condoms or to reduce the incidence of other
STDs by 50% through contact tracing and treatment.

C.  DRUG USE

HIV 1s transmitted by sharing needles to inject drugs. Partly because many
prostitutes are drug users and partly because most drug users are heterusexuals, the
spread of HIV infection in the needle sharing community is seen as a major source of
HIV for the heterosexual community at large. Some impo:tant questions are what
fraction of the population engages in needle sharing in different age groups and
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regions, how the drug users are distributed according to frequency of needle-
sharing, and how much bias exists toward sharing repeatedly with the same peopie
and against sharing with strangers (Ginzburg, 1984; Black et al., 1986). All of the
mixing questions raised about sexual activity also apply.

D. POPULATION DENSITY

The results from serological tests conducted by the Department >f Defens2
(DoD) on potential recruits indicate that the prevalence of HIV is highly correlated
with population density (Burke et al., 1986). There are a number of reasons for this,
each of which needs to be considered. Unlike many non-STDs (e.g., measles,
influenza), the rate of infection should not be strongly dependent upon the density
of the host; however, people in large cities are less constrained than those in small
towns. Endemicity also plays a role because the virus will be spread only when it is
present. Finally, physical distance creates barriers between peopie, so mixing may
be more rundom and homog=2neous in denser areas. The spread of the virus into the
regions surrounding the major population centers is a diffusionlike process in which
the diffusion rate is a function of the popu'ation density.

E. ZONES

As nentioned abnve, isolation provided by distance provides another barrier
to the ¢pidemic. Behavior may also be somewhat regional. For example, the
prevalence of shooting galleries in New York City may be a major reason why HIV
has spread more rapidly within the New York City drug community than in the
Califernia drug using communities where shooting galleries are less common. In a
risk-based drug-use model (as described in Section V.B.), the pirtnership
(needle-sharing) mixing distributions would be different for New York City than Les
Angeles, and the predictions weould be very different. Also, to understand how
rapidly the HIV infection will spread into different regions of the country, we might
want to model how each region is connected to every other region by the
movement of people.

Infection through blood transfusions caused a wide geographic spread of the
virus. In the spring of 1985, before stringent screening measures were applied to
blood donors, 0.25% of the blood tested by the ELISA test was seropositive (CDC
1986). Infected blood led to a widespread scattering of HIV infections thrcughout
the United States, which might have a major impa=zt on the future course of the
ep.demic, even though only a tiny proportion of the population was infecied this
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way. Today, most of the HIV-tainted blood in the lJnited States is identified by the
ELISA test; therefore, current blood-transfusion infections will have a negligible
effect on the course of the epidemic.

F.  ETHNICITY AND SOCIAL GROUP

The number of AIDS cases that have occurred, especially those in women and
children, are disproportionately greater in the Black and Hispanic populations than
in the rest of the population (Rogers and Williams, 1987). The DoD data from
military recruits also show this bias (Burke et al., 1986). It is not understood why the
infection has spread more rapidly into these populations. There are, however,
social barriers to contacts between different racial groups, so it may largely be a
question of endemicity. In other words, once the virus is introduced into a group of
people, it can spread only in that group until a contact with a member of another
group is encountered. If there are not enough contacts between racial groups, the
virus can spread entirely in one group without extending into another. These
groups need not be only racial; any isolated group with few outside contacts could
experier.ce an isolated spread. For example, students at the same university might
form such a group. Lifestyle differences in these groups could result in different
parameter values for the other risk factors.

We may divide individuals within a group into two classes: social and
nonsocial. The nonsocial individuals interact only within their group, whereas the
social individuals have contacts both within and outside their particular group. This
approach has also been used to model other infectious diseases such as hepatitis
(Sattenspiel and Simon, 1988).

G. COFACTORS

Cofactors, such as discases and practices that cause skin lesions or impairment
of the immune system, may influence a person’s susceptibility to becoming infected
and, once infected, that person’s infectiousness and/..r the disease progression. As
yet the data on the effect of cofacturs are poor, but "umerous cofactors including
syphilis, gonorrhea, herpes, drug use, and malnutrition have been proposed. These
cofactors are more common in some groups, such as individuals in urban slums, than
in others and could allow for more rapid spread in those groups than would occur in
the absence of cofactors. For example, infectivity estimates from middle class
spouse/pair studies may not give correct estimates when other venereal diseases are
present. It may be necessary to take account of the distribution of cofactors in the
population to fully understand HIV spread.
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In central Africa, cofactors probably account for the rapid heterosexual spread.
Untreated genital ulcers often caused by chanchroid, which are rare in developing
nations, greatly increase infectivity.
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I1}. DISEASE PROGRESSION

Studies of the long-term effect of the HIV virus on the immune system are all
reaching similar conclusions: HIV causes a slow but nrogressive decline in the
immune system. The rate of this decline varies from person to person, and some
people appear to stay on a plateau for long periods. Short-term upward
fluctuations in measurements of quantities such as the T-4 helper cells are often
observed, but most infected immune systems decline over the long run (Brodt et al,
1986, Redfield ar.d Burke, unpublished report; Melbye et al., 1986). Autopsies of
AIDS victims st »w that HIV aiso crosses the blood/brain berrier in a large percentage
(around 80%%6) infected persons and causes a wasting away of the brain; itis not
yet clear if this deterioration is a slow progression or if it happens late in infection
(Finkbeiner et al., 1986).

When the immune system is sufficiently compromised or when tke brain is
sufficiently affected, symptoms appear. Initial symptoms of immune problems
range from the very mild (so-called AIDS-reiated complex [ARC], or generalized
lymphadenopathy, or even just poor health) tc KS and the devastating
opportunistic infections classified as AIDS. Detericration of the brain leads to
blindness and Alzheimer’'s-like dementia. Eventueally, death follows. It is not clear
what the appearance of KS has to do with HIV-stimulated immune-system decline.
KS may occur at any point more than 1 year after infection, independent of immune
system breakdown. It is much more prevalent in homosexual men from New York
City than in other groups. It is often not the eventual cause of death; the immune-
system decline continues until an opgortunisticinfection leads to death.

A.  TIMEFKOUM INFECTION TG AIDS

This picture of progressive immune-system decline indicates that most infected
individuals eventually die frem HIV-induced illness and that the probability that an
individual will develop AIDS depends an how long he has been infected. Both the
time from infection to diagnosis of AIDS and the time from diagnosis to death are
extremely variable. HIV infected adults have developed AIDS in less than 2 years
and some have remained well for more than 8 years. The distrhution of times
between infection and dinical AIDS is only partially known because of the long
times involved. In studies of patients for whom an estimate of date of infection can
be made (such as hemophiliacs), the percentages developing AIDS in any given year
after infection are eithes still increasing or are remaining roughly constant, which
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leads to an estimate of an average time to AIDS nf at least 8 years. A possible
distribution of times from infection to ciinical AIDS 1s shown in Fig. 6.1.

Because it is such a widely spread dist:ibution, any mode! that is going to
predict the number of infected persons, cases of AIDS, and death< must take into
account the wide variability in duration o' infections to ensure not only that
approximately the correct distribution of peop!e develops AiDS or dies, but also that
infected people remain infectious for lengths nf times that reflect the actual
infectious periods. A person who is healthy but infected for a long period has a
higher probability of infecting someone else thar a person who develops AIDS
relatively early.

Similarly, there is a wide distribution of times between infection and death.
Death may occur immediately after diagnosis or more than 6 years later, with an
average patient lifetime of 12-14 months. 1.1 the future, these times will depend
strongly upon the effectiveness of therapy s:'ci» as the use of AZT. Keeping track of
time since infection allows us to use “best guess” estimates fur these distributions.
Another effect of the long duration of infecticn is that as infection progresses,
people will ascertain their seropositivity and change their behavior.

B. VARIABLE INFECTIVITY

Infectiousness of individuals carrying HIV varies as the course of the disease
progresses. In studies of infected hemophihiacs and bivod transfusior recipients,
few of their spouses have seroconverted sooner than a vear before the infected
individuals developed AIDS or ARC symptoms (Goedaert et al,, 1987b; Fischl et al,,
1987). This time lag indicates that infectiousness is often minimal until late in the
course of the infection. However, some partirers have been known to cunvert
immediately (Weisset al., 1985).

The infectivity may be related to the amount of free virus in the circulatory
system of an infected individual Studies indicaie that the amount of free virus goes
up in the first few weeks after infection (Francis et al., 1984; Sulahuddin et al., 1984)
and then goes down as antibody response occurs, remaining at very low levels for
year,. There may be sporadic bursts of free virus and, hence, infectivity in these
intermediate years because of other challerges of the immune system. As the
immune system collapses in the year or so before AlDS develops, viral counts return
to high levels (Robert Redfield, private communication; Lange et ai,, 1986). This
progressioenis schematically shownin Fig. 3.1.
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Figure 3.1. Schematic of the .nfectiousness of a sexual contact with the same
ir.dividual. Initially, the virus quickly multiplies but then is suppressed by the
immune system. Towards t e end of infection, viral counts again become high,
coincident with immune-system breakdown. This infectiousness curve is based on
relative 2mounts of HIV in the infected individual. Also, spouse/pair studies indicat
the the infectiousness of an individual must be low during the first few years after
the initial immune response.

It is clear both from the infectivity stuaies of Grant et al. (1987) and Padian et
al. (1987) and from our numerical studies that the chances of infection from a single
sexual contact must be quite low (less than about 0.01) for most of the duration of
infection, or elie the virus would have spread much faster than it has. If the initial
infectious period dues exist, it is important that it be well defined for infected
individuals with many contacts because it has a large effect on the rapid-growth
phases of the epidemic. This effect is especially the case when a disproportionately
large percentage of infected people have only just become infected.

Such a radical time variability of infectiousness raises an additional possibility.
We know that the number of infected people has grown rapidly during the early
stages of the epidemic with doubling times significantly less than a year. it may be
that infection has primarily been transmitted from the infected to the noninfected
in the early time interval of roughly 2-6 months. The perind of low infectiousness,
0.7-5 years in Fig. 6.2, may contribute to fewur total infections. The periods of
increasing infectivity, 1-3 years before AIDS, have a reduced relative contribution
because of the rapid growth of the infected population during the low-infectious
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period. This reduced contribution may be especially true because the people with
large numbers of partners were infected first and could have encountered many
people during the first period. However, as the growth of the epidemic slows, and
the epidemic moves into groups with less than 1 partner per 6 months, contacts with
people in the later disease stages would become the primary transmission route.

Because the disease iz much more infectious in the later stages, widespread
screening and voluntary testing to identify the HIV carriers (before they enter this
stage) will be more effective than if the infectivity were constant. Any cost/benefit
analysis for testing must take variable infectivity into account. Changing an
individual’s behavior before he or she enters this very infectious stage could be one
of the most effective means of slowing the epidemic.

C.  CLINICAL MANIFESTATIONS

Models coula differentiate between the various clinical manifestations of AIDS
based on different conversion probabilities. At this time we do not differentiate
out have a lumped conversion-probability distribution, which peaks between 7 and
10 years and assumes every infected individual eventually converts to AIDS. The
conversion time may be longer in healthier and younger populations, and medical
advances may lengthen the conversion time.

D. GENETIC VARIATION

The genetic variability of HIV DNA sequences indicates that the virus is
mutating 5 to 10 times faster than an influenza virus (Smith ct al., 1987; Hahn et al.,
1985). The variability is due primarily to duplications, insertions, or deletions of
short segments and point mutations. The various straint may have dramatically
different resistance to vaccines or may lead to different etiologies (e.g., dementia,
KS vs PCP). If different viral strains have different etiology, then some strains may
eventually win out over others. For example, strains with longer incubation times,
those that are more infectious, strains such as HiV-2 that are not recognized by the
ELISA test, or those that least reduce the health of the infected person when they
are most infectious may eventuaily spread faster than other strains.
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IV. ANALYTIC FORECASTING
The accurnulat :d nitmber of AIDS cases diagnosed in the United States as
reported to CD(, A(t, isnotgrowing exponentially butis well approximated by

3.0 . (4.1a)
A(t)=174.6( - 1981.2)"" + 340 L Z-.

for times t - 1982.5. The rate of new AIDS cases per year, A'(t), is similariy
approximated by the derivative of Eq. (4.1a), the quadratic equation

A'(1)=523.8 (- 1981.2)%0 (4.1b)

This polynomial growth is evident in nearly every CDC-defined category including
risk behavior (Fig. 4.7a), age, region of the country (Fig. 4.1b), and ethnic group
(Hyman et al., in preparation). The AIDS cases approximated by Eq. (4.1) are based
on the pre-June 1987 AIDS definition and do not include dementia and wasting
syndrome.

Because the cumulative growth of AIDS cases is cubic [Eq. (4.1a)], the cube root
reference frame <hown in Fig. 4.1 is a natural frame to identify changes in the
epidemic. Similarly the incidence data should be studied in the square-root
reference frame. The data is also linear in a log-log reference frame where time has
been shifted so t=0 corresponds to 1981.2. In the log-log reference frame the
exponents can easily be determined by the slope of a linear least-squares fit. If the
data are plotted in a log-linear reference frame, then extrapolation of future cases
becomes much harder and anomolies such as for region 9 in Fig. 4.1b are less
evident.

Because the growth is polynomial [Eq.(4.1a)], the doubling time is not
constant but is increasing linearly; setting A(t + tg) = 2A(t) in Eq. (4.1a) defines the
doubling time tg = 0.26(t-1981.2) years. This increasing doubling time has led
some observers analyzing the data in a log-linear reference frame to incorrectly
state that the epidemic is leveling out. when in the cube-root reference frame (Fig.
4.1),itis clear that the trends have been consistent for the past 5 years.

The cubic polynomial growth can be explained by a wave of infection
progressing from populations with high-risk behavior into populations with lower-
risk behavior. For example, if individuals with risk behavior r (proportional to the
number of sexual partners or needles shared) are infected through interactions with
people of similar behavior and if the population is distributed as a decreasing
function of risk behavior [e.g.,, N(r) = No/(1 +ar)?, where N(r) is the number of
individual with risk r], then the highest risk population is quickly infected, giving
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Figure 4.1a. The } power of the CDC AIDS cases is linear in risk categories (1-5)
indicating an approximate cubic growth a(t-to)3. The risk categories are 1.
homosexual male; 2. IV drug user; 3. homosexual and IV user, male, 4.
hemophiliac; 5. heterosexual contact, 7. transfusion, 9. other or unknown. Here
the lags ‘n reporting time have been approximated and accounted for. (Data
analysis by C. Qualls).
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Figure 4.1b. The { power of tha CDC AIDS cases is linear in different regions of
the United States indicating an approximate cubic growth a(t-t5)3. The
metropolitan regions are 1. Northeast;, 2. Central;, 3. West; 4. South, 5. Mid-
Atlantic. Region 9 is nonmetropolitan and region 0 is unknown. Note that the
nonmetropolitan AIDS cases in region 9 did not grow as a cubic until 1984. (Data
analysis by C. Qualls).
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rise to an initial transient exponential growth. This growth quickly becomes
polynomial as the saturation wave of infection moves into lower-risk (but still high-
risk) behavior and finally slows to an exp(1/t) growth rate (See Sec. VII.B). The
"polynomial growth is analyzed in more detail in Colgate et al. (1987).
If C(1) is the prebability that a person infected with HIV at time t-t has
developed AIDS by time t, and if I'(t) is the number of people infected per year with
HIV, then the cumulative AIDS cases reported to CDC satisfies the relationship

i

All) = p] CI't=vde (4.2a)

0
or

o

A = p J CHOT' =) dy (4.2b)

0

where p is the fraction of infected individuals eventually regarted to CDC as AIDS
cases. Thus p is the product of the probability that an infection will result in a
pre-1987.5 CDC-defined AIDS case (which excludes dementia and slim disease) times
the probability it will be reported to CDC. The probability that an AIDS case will be
reported to CDC is the product of the probabilities that it will be diagnosed and,
once diagrnosed, that it will then be reported. Using estimates of C'(1), the
probability density function for conversion to AIDS, we can solve Eq. (4.2) for 1'(t). In
these calcu'ations we used p = 0.72 and the Weibull proLability density tunction
described in Section VI [Fig. 6.1, Eq. (6.1)], unless otherwise stated.

Equation (4.2) is ill posed; small changes in A(t) or C(1) may cause large
changesin I'(t). We solved both Eqgs. (4.2a) and (4.2b) by a least-squares quadrature
method where I'(t) was approximated by piecewise cubic Hermite polynomials
(splines). A(t) was extrapolated using Eq. (4.1) . The calculated solutions agreed
within 5% when 10 to 30 piecewise polynomials were used. Below 10 piecewise
polynomials the approximation was too coarse, and above 30 the ill posed nature of
the problem created high frequency oscillations in the solution.

The cumulative number of infected individuals I(t) was most sensitive to the
extrapolated estimates of A(t), the fraction of the infected population that
eventually is reported to CDC as AIDS cases, and the most likely conversion time to
AIDS, which we call v, (C“(l,\) = 0) . After the initial transients, I(t) was relatively
insersitive to the width of the distribution C'(1) about 1,. The uncertainty that an
HIV infection wiin result in an AIDS case reported to CDC i1s a linear factor and
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changes the estimates for the infected by p'. We now investigate the effects that
these uncertainties in each of C(t), the fit of Eq. (4.1) and the ertrapolation of
Eq. (4.1) have en the estimates for the seroprevelance of HIV.

Because so few people develop AIDS in the first 2 years after infection, it is
clear that today's AIDS cases cannot be used to estimate the number of people
infected in the past 2 years with any accuracy at all. In fact, initially the errors in the
estimate for I'(to-t) explode proportional to the relative ervor in A(t,) times C '(1).
Here to is the maximum time at which A(t) is specified. More generally, a relative
errorin I'(t,-v) of

£ (1) - e,

¢l - caonie)A e -1y !

can be introduced and the relative values of A(to-1) will change less than ¢, for
t ~ 0. InFig. 4.2 we plot the solution lg(to-1) of (4.2) using (4.1). Also plotted are
the upper and lower error bounds, I,'(to-1) = lo'(te- )l te (1), for e, = 0.01,
to = 1988. These error bounds for I(t) and I'(t) due to errors in the fit of A(t) are
small fort = 1984 but gradually increase and explode between 1 and 3 years ago.

The upper and lower bounds |, and |.forI'(t),t* to,in Fig. 4.2 would result in
very different future values for A(t), t * t,. To reduce the error bounds on I'(t),
t° to, we must incorporate assumptions on behavior of A(t), t - t,. That is, to
estimate the number of infecteds at time t,, we must first estimate future AIDS
cases fortimesup tot = t; + 1,. These extrapolations can then be used in £q. (4.2)
to estimate the infected population I(t), fort = t,.

Even though the cubic extrapolatior: in Eq. (4.1) closely agrees with the data
over the past 5.5 years, it 1s purely an empuirical fit to these data. This approximation
is not based on transmission mechanisms and therefore does notinclude any effects
of behavior changes that are known to have occurred, saturation ot infections in
certain risk groups, the screening of the blood supply, the infection starting in new
populations or any other of the major influences on the future course of the
epidemic  Because the unde 'ying transmission dynamics are changing, we do not
expect the cubic to continue to hold indefimitely and, hence, the traditional
statistical confidence bounds are not an appropniate tool to estimate errors 1n
forecasting future AIDS cases. Therefore, we have kept the error analysis simple in
our investigations of the sensitivity of the seroprevalence estimates on the future
AIDS case projections. To allow for a relative error of v per vear in the rate of AIDS
cases per y~ar, we muhiply Eq (4 1b) by (1 )0 """ for ¢ 1988 In hig 43 we
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of Eq. (4.2) using the Weibull conversion time distribution of Medley et al. (1987)
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demonstrate the sensitivity of the estimated seroprevalence on future AIDS
predictions by solving (4.2) forl, with A (1) = A(t)(1 1) 1988,

To investigate the effects of the uncertainties in C'(1), we extrapolated the
AIDS cases using Eq. (4.1) and compared the solutions of Eq. (4.2) in Fig. 4.4 f. - ‘our
different conversion functions. (a) The Weibull distribution shown in Fig. 6.1, which
has a most likely time of 7.5 years and a median time (C{t ) = }) of 8 years; (b) a
delta-function at 7.5 years (that is, everyone infected develops AIDS in exactly 7.5
years); (¢) a step function thatis 0.083 for v between 2 and 14 years and 0 otherwise
(there is no most likely time; the median time is 8 years); and (d) a delta-function at
12 years. The solutions for the number of infecteds for the first three of these agree
within a few percent, asshown in Fig. 4.4.

2.5-7—

CUMULATIVE POPULATION x 107°

0.0 _.;*—

1978 1982 1986 1990 1994

TIME

Figure 4.3. The new AIDS cases from Eg. (4.1b) were extrapolated with a maximum
relative error in the rate of new AIDS cases of *10% per year after 1988. The
cumulative infected population I(t) was then estimated fort = 1994. Herep = 072
and C'(1)i1sdetined in Fig. 6.1.

As the width of C'(1) approaches zero (that is, a delta function), then the
solution of Eq. (4.2) approacihes

o p YAu L) (43)

This estimate can be uted as a rough approximation for I(t), even for fairly wide
distributions C'(1), as demonstrated in Fig4 4 This approximation tan be used to
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Fig. 4.4. Equations (4.2) were solved by extrapolating the cummulative AIDS cases
Eq. (4.1) and setting the reporting fraction p = 0.72. After some initial transients,
the solutions are insensitive to the shape of the conversion time distributions as
Ion% as the most likely conversion tiines agree. a. (solid line) Weibull, b. (short
dashes) s-function at 7.5 years, c¢. (dash-dot) step function, 2-14 years, d. (long
dashes) é-function at 12 years.

estimate the number of infected individuals in January 1988. For example, if we
assume that 80% of the infected individuals develop CDC-defined AIDS and that
90% of these are reported to the CDC, then p = 0.72. If 1o = 9 years and the
number of AIUS cases in 1997 (= 1988 + ta) is 85% of the extrapolated cubic
approximation (4.2), then the current cumulated number of infected individuals is

0.86 . (4.4)
1{1988) = |m||174.0(1988 0+9-19812°+340 | =813,422

We remark that if only 40% of the infecied individuals develop CDC-defined AIDS
(as was thought a few years ago) then, even though the predicted AIDS cases are
the same, this approximation estimates that there would be 1,626,844 people
infected with HIV in the United States.

Although the number of AIDS cases for different conversion time distributions
in Fig. 4 4 agree, the length of time that the current AIDS cases have been infected
have very different distributions. Most of the AIDS cases diagnosed today were
infected 3 5 years ago. This time is shorter than the most likely time to convert to
AID5 because the HIV-infected population is growing rapidly. In Fig. 4.5 we give an



example where the HiV-infected population I'(t) is growing quadratically and the
most likely time to convert to AIDS is 7.5 years. The distribution of patients
currently developing AIDS, A'(t,1) , is the product of the two dashed curves and,
hence, is highly skewed toward the early conversion umes.

The current most likely time since infection for current AIDS cases is 4% years.
This most likely conversion time implies that we should soon see a slowing of AIDS
cases in transfusion recipients. Also, the sexual behavior changes in 1983-84 in the
San Francisco area should just now be reducing the growth in the homosexual cases.

Note that, even when the time since infection is known, A'(t,1) is insufficient to
determine C'(1) unless an estimate of I'(1) can be made. For the transfusion-infected
patients, the shape of I'(1) could be ascertained if the contaminated fraction of the
blood supply was known as a function of time.
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Figure 4.5. Because the number of people infected with HIV is growing rapidly, the
distrbution of time since infection in a group diagnosed with AIDS in any time
period does not reflect the distribution of times from infection to AID  Multiplying
I'(t, L) by C'(1) gives the distribution of AlDS cases A'(t,, ) diagnosed .. time t, that
were infected at time t5-L. Note that because I'(t) s increasing, the rost ikely time

to AIDS (7} years) 1s 'onger than the most likely length of infection for current AIDS
cases (44 years).

Simphfied analytic forecasting models such as these can give good estimates
on how many people will get AIDS next week and,give fair estimates for the next
year, but they are msufficient to avcurately predict the course of the eprdemic 35
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years from now. The only way to make reliable long-term predictions is to include
far more detail on the epidemiology and sexual behavior through full-scale
computer models.
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V. SIMPLIFIED MATHEMATICAL MODELS

A complete model of the spread of the AIDS virus in a sexually active and
IV-drug-using community must account for the complicated interactions between
people. However, one must begin by unde.. anding the behavior of simple models
before going on to explore more complex ones. Two different aporoaches to this
modeling have been developed. One is based on ascertaining the risk to an
individual (Hethcote and Yorke, 1984; Anderson et al., 1986). The other is based on
population growth models in which individuals form and break partnerships. In this
approach, paired individuals become infected through multiple contacts when one
partner is infected but remain protected for the duration of the partnership if both
are uninfected and also cannot become infected between partnerships (Dietz, 1988
and unpublished report). In the risk-based models, the population i« easily stratified
according to the amount of risk individuals incur, but they do not model well the
risk (or protection) of longer-term relations. On the other hand, the partnership
models are more difficult to stratify and thus account for the wide variations in risk
behavior within the population. In this paper, we are primarily concerned with
modeling HIV spread in high-risk populations, so we use the risk-based approach.
We do, however, account partially for partnership duraaon by allowing a variable
number of cuntacts in each partnership.

in this section, we describe several models for the sexual spread of HIV in a
population structured only according to rate of acqu..ition of new partners; similar
models would hold for needle-sharing associated with IV drug use. We begin with
model that neglects all heterogeneities in the susceptible and infected populations,
present a similar model for heterosexual spread, address the variations due to
progression of infection, and finally split the population according to risk behavior.
Parameter estimates for these models will be discussed 1n Sectinn VI and their
behavior will be explored in Section Vil.

The models discussed here do not incorporate behawvior changes, although
that is easi'y added. We assume that this population would be stable if HIV were
not present, with migration and maturation into the group balancing deaths and
aging processes that remove people from the group. We assume there is no
immunity, so all uninfected members are susceptible to infection. Once infected, a
person remains infected, infectious, and sexually active until AIDS intervenes In all
but a simple heterosexual model we do not distinguish the sex of the members of
this at risk community. The assumptions involved in the development of these



V.2

models will be described in more detail in a later report where a derivation of the
probability-of-infection function is given.

A. T-MODELS

In our models, we divide this at-risk community into uninfected susceptibles,
infecteds without AIDS, and diagnosed AIDS cases. We assume that, before the
troduction of the AIDS virus, there was a balance between a constant maturation
and migration rate into the community and a constant rate per individual of
retirement or death out of it; these processes continue in the presence of AIDS.
Susceptibles become infected through sexual contacts or 'V reedle-sharing with
partners whom they choose randnmly, at @ fixed rate, from the susceptible and
infected portions of the community. Infected individuals eventually develop AIDS,
become sexually (or needle-sharing) inactive, and die at an accelerated rate.

In the simplest model where

t : time,
S(t) number of susceptible individuals,
Ity number of infected individuals,
Aft) number of AIDS rases,
Ar(t) : accumulated number of AIDS cases,
N(t) number of susceptible and infected individuals without AIDS,
H : death rate of individuals without AIDS,
] : death rate of individuals with AIDS,
y : rate of developing AIDS of infected individuals,
i ; probability of infection from a sexual contact with an infected,
C ; average number of contacts between sexual partners,
r : average number of new sexual partner; per year, and
So populatien size before the AIDS virus was introduced,
we have
dStn
e WS, - S s
"‘;:" MOS( - (y + il (5.1
dAw

I - HAW
dt Y
dA ,I.(I)
— == Bl
{

ot
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with

A = icr =—
)

N = 8@ + i)
and where A(t) is the rate of infection per susceptible. (Note that we changed
notation from Section IV where I(t) and A{t) are cumulative quantities, ra her than
current numbers as they are here.)

This model portrays a community in which people mature or migrate into the
susceptible comrmnunity at a constant rate So. People withcut AIDS die (or become
inactive) at a constant rate, with p' their average life expectancy. Infection occurs
through sexual contact with an infected partner. Partners are chosen at random,
from all susceptibles and infecteds, at an average rate r par year, so that the
probability a partner is infected is the fracticn of infecteds in the population.
infecteds develop AIDS at a rate 8, and AIDS cases have a decreased life expectancy
5.

This simple model has been presented and analyzed by many authors for the
spread of various sexually transmitted diseases, i~cludiing AIDS (see, for example,
Hethcote and Yorke, 1984; Anderson et al., 1986).

Equation (5.1) can be modified to nodel purely heterosexual spreading by
splitting the population according to sex and accounting for the partnership
balance relationships. These balances are necassary to account for situations where
there are not ennough women, and men can.1ot have as many partners as they might
like, and vice versa. A symmetric model that satisfies the condition that the number
of female partners equals the number of miaie partners, and where we define

So' = (wg, Mp) . initial populations of women and men,

S' = (w(t),m(t)) . suscep.ibles,

' = (W(t),M(t) : infecteds,

Al = (W, (1), M,(t) :  AIDS cases,

r' = (rw,fm) . average desired numbe, of female (ry) or male (rm)
partners the inen or women have per year,

" = (iw,im) . infectiousness of a contact with a woman (iw) or a
man (im),

again gives the system in Eq. (5.1). Here wa have used the superscript T to indicate
the transpose operator. The rate of infectior per susceptible is
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Mo =G M i Wer rus+n” F1! (5.2)
m w m w

and the product ASin Eq. (5.1) isdefinad as (A1 w, Aom)".
The initial growth of infecteds in both of these models is exponential, with

_ (G- - p)
I = I()e ,

where a = icr for the model in £q. (5.1) and a = crarm{iwimWomo) ¥ (r7-SoT) ! for the
modelin Eq. (5.2).

The simplistic choice of A in Eq. (5.2) illustrates the complexity introduced by
balancing male and female partners. Adding additional structure, such as risk
behavior or age, complicates the balance equations even more. Currently, there is
very little data on male/female mixiny patterns. If the solutions are sensitive to the
different balance equation assumptions, then more data will be essential.

These two models assume, among other things, that all contacts with infected
persons are equally infectious throughout the course of infection. As discussed in
Sections I1.B and VI.B, there may be a wide variation in infectiousness as the disease
progresses. The constant rate of progressing to AIDS imposes an exponentially
decaying distribution of times to AIDS. However, cohort studies have found that
the probability of getting AIDS increases with time since infection for at least the
first 7 years (see Section VI.A). Thus, a decaying distribution is a poor
approximation.

If we include time since infection or AIDS, then variable infectivity and the
distributions of times from infection to AIDS and of times from AIDS to death may
be explicitly modeled. Following Anderson et al. (1986), we break down the
infected population I(t) according to the time since infection, 1. I(t,0) is now the rate
at which people become infected and I(t,1) has the units people/year. Similarly, we
distribute AIDS patients according to time since AIDS. Defining

I(t,v) : distribution of infecteds according to time since infection where
I(t,1) is the rate of people infected per year 1 years ago that are still
infected at time 1,

A(t,1) :  distribution of AIDS cases according to time since AIDS began,

i(1) . probabilty of infection from a contact with a person infected 1 years
ago,

y(1) . rate of developing AIDS at a time 1 after infection,

8(1) : deathrate at ime v« after AIDS starts,

we have the system
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dS()

o = p(S0 - 8 - MO8,

1(t,0) = MOS()

al(e,u) dl(¢,1)
e — +
at aL

= —{y() + pMi,y) ,

A@0) = I y I(t,udy (5.3)
0

ALY ALY
— + — = —~8(A(L),
at au

A - le( )itud
[ p— { v,
N([) o L itu)de

o

Ny = S + J I, dry
0

and

dA ,I.(l)

— = A0) .
dt

The infectivity, i(t), is an average over all individuals infected at time v and is
discussed in more detail in Section VI.B. Although we have not done so, it would be
easy at this point to vary ¢ and r with time since infection and to thus account for
behavior changes caused by infection. For transmission in a heterosexual
population, the model in Eq. (5.2) is generalized in the same manner, with the
infecteds, I", divided according to time since infection and the AIDS cases divided by
time since diagnosis.

B. RISK-BASED MODELS

So far, the models presented do not treat variations in risk behavior between
different people in the group. These models would be sufficient if the variation in
risk behaviors were not large and did not play such a significant role in the
epidemic. However, surveys of risk behaviors in the homosexual communities
demonstrate that the variance in the number of sexual partners per year is large.
For example, the data for London in 1985-86 have a mean of around 25
partners/year and a variance of roughly 75 (see Section VI.D).

In this epidemic, it is significant that the people with many partners tend to
become infected first and then become carriers who infect less-active people. This
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distribution can have a marked effect on the course of the epidemic and on which
risk group is currently at highest risk of infection.

To model risk behavior, we suppose that the population can be distributed
according to their numbers of new sexual partners per year. People mature into a
fixed risk group and leave it only atdeath. Letting

r . number of new sexual partners per year,
S(t,r) : distribution of susceptibles according to the number of partners per
year,

I(t,r,t) : distribution of infecteds according to the number of partners per year
and the time since infection,

c(r,r’) : total number of contacts in a partnership between people with r ard
r' partners per year, and

So(r) : density of people with r new partners per year before the AIDS virus
was introduced,

we have the model
oS, r)
o

WS () = S, = ALAS )

1,0,ry NGNS,

al(t,,r) ’ At r)

=y Q)+ i, Gy,

i L
Al,0) ] ] vl un dulr (5.4)
0o
dA (1) dA L)
e | e ~HAW)
ol du
«IAT
— ’ J vl dulr
dt oo

< rNW) - , rNCL ) dr
4]
and

Nit,r) S(l,r)', i) da
0

We must still define A(t,r). We discuss below two possible choices, random partner
choice and a bias of people towards partners like themselves. Note that now S(t,r)
and Sy(r) have the units peop!s time/partners and [(t,i,r) has the units
people/partners.
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Random Choice

If we assume that partners are chosen at random from the entire population,
then A(t,r) is given by

® ® 55
AMen) = —L { or, ) [ )1, o, Mdudr (5.5)
<rN(t)> | Jo

This model, except with no differences in partnership durations and no variability in
infectiousness (¢(r,r') and i(t) constant), was first proposed by Anderson et al. (1986).
It assumes that the average r-r' partnership is sufficiently short and infectivity is
sufficiently low that the probability that a person has already becom< nfected in
the partnership issmall, i.e.,

muxli(u)c(r,r') <2

Furthermore, the epidemic cannot grow so fast that the chance that a partner is
infected becomes significantly different during the course of the partnarship from
an unmatched person from the same risk group. Anderson et al. (1986) show that
the initial growth of this mode! is determined not by the average number of
partners/year, ¥, but instead by i + o%/f where ¢?is tive variance about this mean.
They then proceed to approximate the model in Eq. (5.5), by replacirg r with
P+ ol/F.

Biased Partner Selection

The A(t,r) given by Eq. (5.5) does not account for the fact that people do not
choose partners at random froin all groups but instead prefer partners of a certain
type and choose them when available. Ideally, the partner selection in any model
should be based on sociological data. This question will be discussed in more detail
in a later report; as a first step towards addressing this question we present below a
model with astrong bias of people toward partners of similar risk behavior.

If mixing occurred only with people from the same risk group, then the virus
could not spread between groups and the system in Eq. (5.1) would cascribe
separate epidemics for each value of r. However, this perfect solation is unrealistic.
The mixing between people of similar, but not identical, risk behavior leads to
diffusion of the virus from one group to another. Under the assumptions described
below, the rate or infection of a susceptible with risk behavior r, A(t,r), 15
approximated by
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er (saN(t,r) &N, >,

M, =¢ 0|1 - +r 2
N,r) ar ar (5.6)
2
d (4,n 1 d (t,r)
+t:r'1 5—<¢‘r>+rij(£‘i)
oar r ar’ r
where
or,r) - i
¢ = [ I wnde .
N, 1y

This expression for A(t,r) is derived as follows. Under the same assumptions on
partnership duration, infectivity, and epidemic growth rates as mentioned above,
A(t,r) can be approximated by

Al r) = J() pl,r, Yk (r,rYdr (5.7}

kit,r,ey = ctr,r) ,“ l(t)m dr
Here k(t,r,r') is the probability of being infected by a partner of risk r'. The
partnership function p(t,r,r') defines the rate a person of risk r forms & sexual
partnership with a person of risk 1'. For random partner choice, this rate is the
product of the rate of partnership formation, r, and the fraction of available
partnerships that are with people of risk r', F(r,r');

re ¥ e,

random

)
/ random

(5.8)
13 o PNU NG ]!

random
To account for partnership biasing, Frandom (r,r') is determined by the fraction
of partnerships from r' that are both available and acceptable. Thus, if partners of
risk r' are acceptnd by people with risk r with a frequency f(r,r') and partners of risk r
are accepted by people with nisk r' with frequency f(r',r), then the fraction of
partnerships available and acceptable to a person of nisk r1s

A ‘
[T /(r',:'b/(l',i')r'N(l,r')I I e P NG Y

1}

There is, however, a constraint on p(t,r,r')  the total rate thatr r' partnerships
form, N(t,0)p(Lr,r'), must be equal to the total rate that ' r partnerships form  In
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addition, F(r,r')must be discounted to take account of the partner choice that a
person from r' has at that time. As an approximation (which may not ensure that
people from r have exactiy r partners/year), we take an average, and let

rfe PR PN

plt,r.ry = ~ : (5.9)
( j NP R PR 0 4 /(r',r")[(r"',r')ldr")
0 !

Substituting Eq. (5.9) into Eq. (5.7) defines A(t,r).

The system in Eq. {5.4) with this choice of A(t,r) gives a model that allows the
implications of a wide variety of partner-selection mechanisms to be investigated.
Different acceptance functions, f(r,r'), and contact functiens, ¢(r,r'), can model
different social behaviors and forecast quite different futures for the epidemic. For
example, f(r,r') = 1impliesrandom partner selection, and f(r,r') = Oforr/ r and 1
for r=r" implies a person and his or her partner always has the same number of
partners.

Diffusion-Risk Model

We weant to consider the effects of a strong selection preference toward
partners from similar risk groups, with more-active people less discriminating than
less-active people. As a first step in this direction, suppose that partners are chosen

within r t tred, according to a Gaussian partnership acceptance function

PR I (5.10)
In Section VII.B, we compare calculations with this choice of f(r,r') to the random-
mixing model, when variations in 1 are ignored (i(1), y(1) and &(1) are constant). If
we look at the limit as this acceptable range gets small (¢ +0), and keep only the first
correction in ¢, we obtain the diffusion expression in Eq (5 6) for A(t,r) forallr < ¢}
(see Colgate et al., 1987, for more details).

If we consider only the initial few years of the epidemic, when few AIDS cases
have yet occurred, birth and death processes can be ignored and we can assume p —
0, y(1) = 0. Approximating the distnbution N(t,r) = N(r) by No/(2t + r)* as in
Fig. 6.3, neglecting vanations in infectivity, i(1) =1 and takiig a single contact per
partner, c(r,r') = 1, thenin Eq (5 4), with A(t,r) given by Eq (5 6), reduces to asimple
diffusion equation for the fraction in each group infected

et
1

A » o ( o) )” | (5.11)

4 o
118 ol Srote ) 4o h )
¢ ' /A '

) !
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where

olt,r) = IL,AN ~ l(r) )

There are solutions of this diffusion equation (5.11) that have the form v(t,r) =
V(rt), (with any arbitrary time shift, t - t + t,, allowed) and numerical simulations
show these similarity solutions are strongly attracting (Section VII.B). Note that
considering only the fraction infected in each group, v(t,r), can give a misleading
picture of where the epidemic is spreading because there are so many more people
with lower-risk behavior. That is, a small fraction of infected low-risk individuals
may be greater in absolute numbers than a large fraction of infected high-risk
individuals.

Neither totally random choice nor biased choice only from neighboring risk
groups captures the true behavior of people. In the absence of data, however, it is
worthwhile to postulate these two extremes and compare the epidemics that each
predicts, but we must also look at mixtures of the two behaviors. In the simulations
presented in the next section, there 1s an enormous difference between the two
extremes. Sattenspiel (personal communication) proposed that a simple way to
look at mixtures of the twu behaviors is to take alinear combination of random plus
self preference. Jacquez et al. (in preparation) have used this idea to examine the
transition from pure random selection to pure self-selection using a model with
four discrete activity levels. They see a large difference in epidemic growth rates,
the time to spread across the different activity groups, and the endemic state when
the pure self selection term dominates (over 90%).

In sexually active heterosexual communities, there may be a very different
mixing pattern from the ones described here. Also, differences between male and
female mixir.g patterns must be assessed. Data on clients of prostitutes should be
gathered and examined to understand not only the activity ievels of these clients,
but also what their nonprostitute partners are like.

Even within the male homosexual and the IV needle sharing communities,
behawvior patterns are not this simple  Behavior changes over time, anJd people with
many partners one year may have only a few the next, or vice versa Social groups
within which mixing is strong, and between which it 1s weak, may cause low activity
people in one group to be infected before high activity people in another group.

The socal/nonsocial mixing behaviors modeled by Sattenspiel (1987) and
Sattenspiel and Simon (1988) may also play an important role in the snread of this
disease. Models with a vaniety of mixing assumptions need to be developed and
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compared, both with each other and with behavioral and serological studies, to

ascertain what complexities are really necessary for modeling HIV spread and which
are not.

C. REDUCTION OF THE RANDOM-CHOICE RISK-GROUP MODEL

Under the assumption that migrations and the natural death rate are small and
that the contacts between individuals go as ¢(r,r’) = 1 + h(r)h(r'), where h(r) - 0 as
r— «, the system in Eqs. (5.4) and (5.5) can be simplified by analytically calculating
the distribution of infecteds in risk and eliminating the risk coordinate. Besides
being faster to solve numerically, the simpler system has the advantage that it is
accurate in the r-direction and discretization errors in r are eliminated. To derive
the reduced equations, we first define two functions of time, y and z, which satisfy
the equations

[ l(l)J ritt G ede du
0 {

dylt) )
. vy 0,
(“ " o
‘ rSULrde ] I It e drdy
o 0o (5.12)
, l(l)! rhry 1 e dh
(1) 0 0
—_— R x0) 0,
ot - o
] rSU e I [ i) dedn
0 0o
and note that
dyin) dAn (513)
Ny torhin)
ot ol
If we assume
S/.1) S0 1) AR YRR (514)

and differentiate with respect to t, we recover the first equation in system (5.4) with
n settosero:

t'.\‘“.") L
/ AEPISUL P (5 1%)
1!

Multiplying this expression for S(t,r) by r and mntegrating over all r,give one
pince of the right hand side of the equations for y(t) and #(t) in terms of y and 2,
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which we call g(y,z). If we let G be the total susceptible population, then

run

G2 = | S(O,r)o"'ry""mmdr,
0

{(5.16)

and we see that

- i(y,2
y,2) = ,
sly,2 P
Multiplying the equations for I(t,0,r) and I(t,1,} in the system in Eqs. (5.4) and
(5.5) by r and by rh(r) and then integrating over all r, gives equations for the other

pieces of these right-hand sides. |f we define

x(40) [ rl(t,r)dr
0

and
uttn) [ rhr) It nde
0
then
g
A, 0) —-—
ot
{ [ o
W - 1'4( ol ) , (5.17a)
dt e
dalin) dnl, )
S yloatea',
ol 1]
and
MYRY hlt, )
Sl B v (5.17b)
o i}
The equations for y(t) and #(t) can then be rewritten as
l o, oda
dytn 0 -
dt - M ' (5 18a)

' v 0de b gty )
1]
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J i(u) ult,vd
0 (5.18b)

It
@ . 40)=0 .

dt o
I x(¢,Ndt + g(y,2)
(]

Initial conditions on x(0,t) and u(0,t) come from the initial infected distribution and
the definition of x(t,t) and u(t,t). The numbers of susceptible, infecteds, and AIDS
cases satisfying Eqs. (5.4) and (5.5) can then be recovered from the solutions of this
simpler reduced system.

In the next section we discuss parameter choices for the models presented in
this section. Numerical results are presented in Section VII.
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VI. MODEL PARAMETERS

The models discussed in the previous section contain a number of parameters
that must be estimated in order to make calculations. Some of these parameters
can be estimated fairly well (p, y, or 6(1)), but for most of them only partial
information is known. We wish to explore the effects of parameter changes, within
plausible ranges, on the solution of these models. In this section we discuss the
information that is known about these parameters and the possibilities that we
explore in the numerical simulations presented in the next section.

A. RATE OF DEVELOPING AID*

The fraction of infecteds developing AIDS within time t since infection has
been estimated for the first 90 months for both the San Francisco Hepatitis B cohort
(Hessol et al., 1987) and the Hersey Femophiliac cohort (Goedert et al.,, 1987a).
These estimates show that small numbers of adults begin developing AIDS 2 years
after infection, with a larger and larger fraction developing AIDS each year up to
the end of these studies, when 30% and 25% of these cohorts, respectively, had
developed AIDS after about 7 years. Progression time distributions have been
estimated for shorter times for other cohorts.

Unfortunately, error bars are large on all of these estimates because of the
small sample sizes. Also, in most cohorts, conversion times are known only within
some general time period, with the earlier conversion times the least well
measured. In addition, the rate of developing AIDS depends upon the age, health
and sex of an individual as well as the course of the disease, e.g., KS, PCP or
dementia.

We cannot wait another 10 years or more for the data before estimating the
distribution beyond 8 years. One way to make these estimates is to choose a
reasonable functional form and fit the parameters to the initial portion of the curve
using existing data. A reasonable function should have an initial shape similar to
the data and should be nonsymmetrical, with some people developing AIDS many,
many years after infection. These restrictions still leave the future shape of the
curve arbitrary. Weibull, gamma , and log logistic distributions have been used in
various studies by previot uthors (Lui et al,, 1986, Medley et al., 1987). We have
chosen to use the Weibull distribution of Medley et al ,

" (6.1)
Cro gt e

withp = 24, q = 0.11 for the times from infection to AIDS, primarily because it
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agrees well with the first 7 years of estimates from the portion of the San Francisco
Hepatitis B cohort for whom the date of infection can be estimated (George Lemp,
personal communication). Thisdistribution, shown in Fig. 6.1, has a maximum at 7.5
yerrs and a median value of 8 years. This function is chosen such that all infected
pe-.ons eventually get AIDS. If less than 100% of the infected people get AIDS, the
tail of the distribution should be reduced, but the first 7 years should be left
unchanged.

To derive the rate y(t) of getting AIDS at time t after infection from C'(t), we
not: that the solution to Iy + I, = -y(t)i{t) is I(t,0) = exp[-f,' y(t)dc] I(t-1,0). Thus,
the fraction of infecteds infected at t-t who have not developed AIDS by time t is

the exponential coefficient, exp[-f ' y(1)dt]. This fraction is also 1-f;* C'(v)dt.
Equating these two expressions, we see that

L
vyl = C'(Y[1 —(.'(l.)l‘l L = J C'(L")dta , (6.2)

0

isthe rate of developing AIDS. y(t)is shown inFig. 6.1 for the Weibull of Eq. (6.1).
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Fig. 6.1. Conversion from infection to AIDS as given by Eq. (6.1) withp = 24, q =
0.11. Here C(L)is the probability of developing AIDS by \ years after infection, C'(1)
is the probability density of developing AIDS at t years after infection, and y(L) is
the conditional probability density of first developing AIDS at time L.
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A possible way to estimate the distribution beyond current conversion times is
to collect data on serclogical markers such as T-4 cell counts and 7-4/T-9 ratios as a
function of time since infection. These markers indicate the rate of disease
progression, even in otherwise asymptomatic individuals; Brodt et al.(1986), and
Redfield (1987) found that over 80% of their cohorts deteriorated in 2- to 3-year
periods. If distribution functions for these markers were estimated for different
times since infection, then they could be projected into the future to predict the
progression time distribution.

B. INFECTIVITY

in Section IIl.B. we postulated a dependence of the infectiousness of a contact
on the clinical status of the infector, which is shown as the dashed line in Fig. 6.2 for
a time to AIDS of 8 years. This postulate is based on a few measurements of viral
presence as a function of clinical status and on speculations about viral interactions
with the immune system. Information about actual variations of infectivity with
disease progression are anecdotal at this point. Even information on average per
contact infectivity is only good enough to make estimates on its order of
magnitude. Padian et al. (1987) have used partner studies to estimate an average
per contact infectivity from man to woman of 0.001 when no other venereal
diseases are present. Grant et al. (1987) have used seroprevalence estimates to
estimate a per partner infectivity for man-to-man transmission (with receptive and
insertive intercourse) of ip = 0.10, but they had no information on numbers of
contacts between partners. They also make some estimates for per contact
infectivity assuming a fixed number of contacts per month and get a range of 0.004
for 8 contacts to 0.03 for 1 contact per month. Only a study with information about
the number of contacts between partners and the clinical status of the partner can
give actual numbers, but these data indicate that the averaga infectivity of a sexual
contact probably lies between 0.001 and 0.03.

We assumed above that the infectiousness ot a single contact, i(1), is the
average for all infected adults. The infectiousness of any single individual, i,(1), may
have occasional ups and downs as health varies, and these variations will he
smoothed out when averages are taken. More than this, there is a wide spread in
the rate at which immune systems deteriorate. We can think of i (1) as the sum of
two functions: 1,(1), which gives the imtial immune response as viral counts first go
up and then are depleted by antibody response; and i (1,1,), which gives the long
term immune response in terms of the individua! s time to AIDS, 1,, after infection.
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Fi?. 6.2 The infectivity of an average person infected at time 1 is @ smeared version
of the infectivity of an individual. We have postulated an individual infectivity
ii(t,La) = i,(T,15) = i*(t/1a. The dotted line shows ia(t,ta) for iy = 8 years, and the
solid line shows the average infectivity, i(1), given by Eq. (6.3} with C'(1) asin Fig 6.1.

If the time to AIDS is given by a prokability distribution as C' (1,), then comparison
of a model with ty explicit and our . del without ty shows that the average
infectiousness is

i) =i+ I‘ ife D dy ! (63)
Figure 6.2 shows the effect of this convol'.zion on a speculated i;(t).

Estimates of the time between infe..tisi1 and antibody response are difficult to
make. Not only are accidents to health care workers with documented
seroconversion rare, but also few pecgle atrisk have been tested trequently enough
to obtain good estimates of their seroconve sion dates. Thus, this time interval rnay
be from a few weeks to a few month and may be different for different
individuals. The relation between viral presenze and antibody response also is not
well established Thus, the aver: ge width of the initial peak and the ratio between
the maximum and minimum values are unknown.



For the t-model calculations of the next section, we have taken i,(t) = 0 and
i,(t,ty) = i*(Ur,). We use a piecewise linear infectivity, i*(v/t,), as shown in Fig. 6.2.
The solid line in Fig. 6.2 shows the effect of applying Eq. (6.3) to the Weibull of Fig.
(6.1) and the i*(t/ta) shown as i(1,8). We investigated the effect on model solutions
of changes in this profile for i*(x).

C. DEATHRATES

The death rates p and (1) are the model parameteis for which the best data
exist. If we take p-1 to be the average lifetime of an adult, it is around 70-80 years.
On the other hand, if we want p to represent the rate of attrition out of the at-risk
community, a p-! of 30-50 years is more reasonable. In our calculations, we use
p = 0.02.

The probability of death once AIDS symptoms appear can be estimated from
CDC mortality data, where deaths are recorded according to diagnosis date. The
rate of death is high at first and gradually decreases. An exponentially decreasing
probability density for death as a function of time since AlD., which gives a constant
death rate, fits adequately. A slightly better fit is found by taking the density
function to be

D' (1|¢upl --«lzt(l 0(1,‘|) lI, (6.4)

where u is the time since AIDS symptoms appear and D, = 1 is chosen to normalize
the area to 1 at = 20 years. Now vve get the rate of death to be decreasing with

1

Bu o DU =Dl Y, b - [ D)y (6.5)
(1}

d,=0.075andd, =0.05 give reasonably good fits to the CDC data, with 48% dead in
1 year and 90% dead about 5 years later. A recent follow-up of AIDS cases found
that deaths were severely under reported (Hardy et al., 1987). Thus, this
distribution might underestiimate the true death rate due to AIDS. This
underestimate will be somewhat less severe than it might I ave been because of the
widespread use of AZT.

D. DISTRIBUTION OF RISKS

Sexual activity data from studies of homosexual men show that there is an
enormous variation between individuals 1in the numbers of partners and the
amount and type of contacts Participants in the Multicenter AIDS Cohort Study
(MACS), who were questioned between April 1984 and March 1985, reported
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between 1 and 500 male partnersin the previous 6 months, with a mean of between
5and 10 (Kingsley et al., 1987). The San Francisco Men’s Health Study recorded the
numbers of their respondents according to the groupings 0,1, 2-9, 10-49, °50
partnersin the 2 years before June 1984 (Winklestein et al., 1987). Homosexual men
surveyed in 1984 in London and grouped according to 0, 1-5, 6-50, 51-100, and
101 partners in the previous year show a similar amount of variation (data from T.
McManus reported in May and Anderson, 1987).

These data are avaiiable only in interval form, whereas we use a continuous
distribution in our model. Availability of continuous distribution is @ common
problem with data. To derive estimates of this continuous distribution, we first
formed the cumulative data set of how many people had less than or equal to x1, x2,
... partners in the time interval, where xi, x2, e.c, are the top value for the interval.
The last x; is chosen somewhat arbitrarily. We then interpolate the cumulative data
with a smooth, monotonicity-preserving interpolant, such as constrained cubic
splines. Differentiating the interpolant gives the continuous density function Data
sets from different studies, with different intervals, can be compared, or combined,
using weighted linear combinations of the interpolants, with weightings
appropriate to sample size or other knowledge (such as date of sample or sampling
procedure). Figure 6.3 shows the contiruous density function obtained from
combining the McManus data with data from Carne and Weller, also reported in
May and Anderson, 1987.

The density functions from these interpolations of the San Francisco and
London data can be used to derive average partnership densities and variances for
each grouping. These estimates (especially the variance) depend on how large the
maximum was assumed to be for the group with ~ 500or 101 partners. The MACS
study indicates that this number is large because there are people far out in the
distribution, giving it a long tail (+ ingsley et al., 1987). For the London data, which
are given in terms of partners/year, a simple function that approximates the data s
0.06(1 +0.02r)* Thus function has a mean of 25 partners per year, matched to the
mean of the interpolant, and a variance of 25:V3 partners per year. At r=75, the
functionis 0 0015.

The facu that this inverse quartic function fooks much ke the data i
interesting. For functions of the form $ (n) = a(1 » br) ", the exponent 1= 415 the
smallest integer choice before the vanance becomes infimite  Hfwe expect humanity
to be as vanable (within finite reason) as possible, we might predict that all rnisk
behavior will follow a similar distribution with n between 3 and 4 The dotted line
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F/'g. 6.3. The distribution of homosexual men attending STD clinics in London,

obtained by combining data of McManus (partners/year) and of Carne and Welier

(partners/month) using the procedure outlined in the text. The dotted line shows

the inverse quartic with the same mean as the data. (Data reported in May and
Anderson, 1987).

in Fig. 6.3 shows the inverse quartic, with the mean matched to the data. In the risk-
model calculations of Section VII, we used this inverse quartic, with a mean of 24
partners per year.

Information on the number of contacts between different types of partners
(long term, casual, prostitutes) is scarce, even for these homosexual cohorts. This
critical information is heginning to be collected (Joseph et al., 1987). Because
transmissibility through different types of contacts may be different, the frequency
of each type of contact needs to be quantified. Without such knowledge, the best
that we can do is to make some reasonable assumptions and explore various
possibilities,

The assumptions that we use are that people with large numbers of partners
have one contact with each partner and that people have more contacts with each
partner when both partners have fewer partners, up to some maximum number.
For simplicity, we use the contact function c(r,r') = 1 +(c,-1)expl-c,(r +r')] and vary
the constants ¢, and ¢,

Behavior in the homosexual community has changed substantially since these
responses were recorded. By mid-1982, the first news stories on AIDS began to have
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an impact (Altman, 1986). The change in homosexual behavior through fewer
contacts or safer sexual practices is reflected both by the drop in rectal gonorrhea in
San Francisco (Judson, 1983; Golubjatnikov et al., 1983) and in the results of cohorts
surveys (Winklestein et al.,, 1986; Martin, 1987). We would eventually like to
incorporate these changes, but we can first use our model to ascertain whether it
captures the infection pattern that occurred before this change. Perhaps
information from contact-tracing studies (Auerbach et al., 1984) car be used to
understand the important questions of partner selection and frequency of various
types of contacts between partners.

Similar information is needed about hetzrosexual behavior and about needle
use. Who does what with whom and how often are very important questions to
answer if we are to understand this pandemic.
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Vii.  SAMPLE CALCULATIONS

Our focus has primarily been on the qualitative features of the early growth of
the epidemic. Therefore, the calculations in this section compare the effects on the
growth of the infected population as parameters are varied. We compare the t-
model and three risk-based models (the random mixing, the biased mixing, and the
diffusion model) with no t-dependence. In the t-model, we examine the
importance of initial conditions and of the time variation of i{(t). For the risk-based
models, we examine the number of infecteds versus risk and show that there are
substantial differences in predictions for the growth of the epidemic. Also, there
are significant differences in who is being infected in the random-choice and
biased-partner models.

We have focused or early growth because it is important to understand how
the epidemic moves into new populations and which interactions are important in
its transient dynamics. Understanding these transient dynamics is the only way to
understand which new populations are at risk and what the short-term effects of
behavior changes and medical advances will be. We are still in the early stages of
this epidemic, so the data that we have come from these stages. We emphasize that
these models are too simplistic to give accurate predictions of the AIDS epidemic
and that the following calculations are meant only to illustrate the behavior of the
models.

A L - MODEL
We first calculate the solution of the model in Eq. (5.3), using (6.1), (6.4), the
parameter valuesdescribed in Section Vi and the initial conditions

SO 1,
ow p X! Bl D can - B e cand (7.1)

AW bz RG 0T Dan - e Y v,

The units are millions of people and years. The scaler parameters used were p =
0.02 year ', r = 36 partnersiyear, p = 1,1, = 1 8yearsand 1y = Oyears Equations
(6.2) and (6.5) were used for the rates of progression from infected to AIDS and
from AIDS to death. The individual mfectinty 1,(1,1,) = 1* (/1) in Eq. (6 3) was a
piecewise linear approximation Li(uvi,11), (12,1,)...] shown as the dotted hne in
Fig. 6.2, which for v, = 8 years connedts the (1,1) data points

L) L0 L0 0 0 01,10 7,0 005), (B 0.0 00h) (R 00 01 (7 2)
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This distribution and the resulting i(t) are shown in Fig. 6 2. We also examine the
effect of varying some of these data points.

The solutions were integrated in time with an explicit Adams-Bashford-
Moulton method tc an accuracy of 106 per unit time. The i-derivatives were
calculated with fourth-order finite differences on a uniform gnd of 201 mesh
points. The grid spacing and error tolerance were varied to check convergence of
the solutions.

The solution in Fig. 7.1a illustrates how the susceptibles steadily decline to
near-equilibrium values after 40 years. Initial growth of infecteds and AIDS cases is
expunential, unlike AIDS cases in the United States (Section V). The infection
saturates the total population in about 17 years, after which it is greatly reduced
because of AIDS deaths. In Fig. 7.1b note that the rate of people infected per year
att = 15 years has a maximum at 1 = 3 years. This maximum moves out and
decreases with time because of the depletion of susceptibles (Fig. 7.1a).

By using caseload data, probability density functions can be constructed to
deteimine what fractions of the infected population are in each stage of the disease
or have developed specific opportunistic infections as a function of time since HIV
infection. These distributions can be apolied to the predictions of the infected
populations, such as the onesin Fig. 7.1b, ta determine how many people will be in
each disease stage at any given time These derived quantities and estimates are a
major advantage of calculating the time since infection as a vaniable in the model

By varying the infectivity profile, we can dramatically change the.rate at which
the susceptible population 1s infected In Fig 7 2 we show calculations with four
different infectivity orofiles. The 'verage infectiousness of an individual, [ "1*(x)dx,
1s the same for all four profiles When the amount of infectiousness in the initial
peak 1s modified, the center region is raised or lowered to account for the change
The difference in the transient solutions illustrates that the shape of the initial peak
ininfectivity 1s important. The shape is important because more people are infected
recently (low () than 5 7 years ago (high 1) Also, the tugh nfectivity for « > 57
yearsis important because of its long duration However, the shape of the late high
infectivity 1s not as imipurtant as the shape of the front peak during the early part of
the epidemic because there are relatively few people in this late penod  If the
infected population remains active 1n this late hughly infectious period, the
epidemic will spread much faster than if they discover they are infected and reduce
their sexual activity Here again we see the need to make testing widely available
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Fig. 7.1a. The solution of the model in Eq. (5.3) with the initial conditions t, = 1.8
years, 1, =0, p = 1 and infectivity as in Eq. (7.2). Here I(t) = [I(t,1)dv and A(t) = |
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Fig. 7 1b. The distnibution of infected and AIDS cases during the calculation at
times 10, 15 and 20 years
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Fig. 7.2. Therate at which the suscept.ole population is infected depends upon the
infectivity profil: even when the area under 1,(1,t;) remains unchanged. S5(t) was
calculated with £q. (7.2) with the changes: a. (solid) unchanged, b. ?short dashes)
initial peak lowered to (1,1) = (0.04,0.01) and center region raised to (0.7,0.01),
(5.0,0.01), c. (dash-dot) initial peak raised to (0 4,0.2) and center region lowered to
(0.7,0.0), (5.0,0.0), d. (long dashes) final peak raised to (8.0,0.3) and delayed by
extending the cenier region to (7.0, 0.005)

Next the imtial conclitions of Eq. (7.1) were changed to match the current
(19868) AIDS case dat~ and the estimates for infecteds from Section IV by setting p =
072,15 = 14 3 years, and 1y = 6.8 years. When we compared these solutions with
Fig. 7.1a, starting at time 8.75 yeirs, we found that the solution from these initial
conditions differed for only a couple of years. After 4 years, the calculations wetre
essentially identical and, hence, are not included here If i(1)r 1s smaller, the effect
of the imtial conditions persists longer and imposes cubic growth of the cumulative
AIDS cases for the first 5 years This initial cubic growth would be due only to the

past cubic growth of infecteds in the initial conditionsof Eq (7 1)

B RISK BASED MODtLS

To simplify the calculations and analysis, we eliminated the 1 dependence n
the nsk based model (54) The ' independent parameters were defined to be the
averagevaiues,y = 0 1,6 = 05,andi = 0025 The imtial susceptible populatiun s
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distributed in risk as an inverse quartic $(0,r) = Sp 3(2m)3(2m +r)-4, with total
population [ S(0,r)dr = 10 million, mean m = [ rS(0,r)dr (10 million) ' = 24 million.
There is migration into all risk categories with migration rate equal to the natural
death rate, p = 0.02 times So(r) =5S(0,r). Initially, there is a Gaussian distribution of
0.001 million infected individuals, centered at risk r = 175, with height 0.0001
million, and no AIDS cases.

Random-Mixing Model

The risk-based calculation shown in Fig. 7.3 used A(t,r) from Eq. (5.5), with the
contact function c(r,r') = 1. This calculation corresponds to unbiased random
mixing across risk groups with a single contact per partner. With p =0, this
calculation is described by the reduced model described in Section V. C. Because
most of the susceptibles have low risk behavior (small r), a consequence of random
partner choice is that most of the partners of high-risk behavior people have low
risk. This resultis contrary to the sparse sociological data that are available.

Because most of the partners of high-risk people are low risk, the high-risk
group acts as a pool of infection foi the lower-risk group, causing the lower-risk
populations to become infected very quickly, with rriost of the early *.IDS cases in
lower risk categories. The distribution of the populations at 10 years is shown in
Fig. 7.3b as a function of risk. The distribution of the infected population is shown
in Fig. 7 3¢ for a sequence of times. We remark that if we had been plotting the
fraction of the population that is infected, I(t,r) / N(t,r), then a saturation wave of
the fraction of infecteds in a particular risk yroup would sweep from the high-risk
categories into the lower risk categories. However, because there are so many
mote susceptibles at low risk than at high rnisk, the total number infected does not
have this shape at all.

The imtial growth of infecteds and AIDS cases is exponential for this model,
just as for the « model. By time 10 years, the infection saturates the population and
the susceptibles are greatly reduced. However, the people at lowest risk are
protected, so the equilibrium susceptible population is somewhat larger than for
the 1 model and the total number infected 1s somewhat less.

Brased MixingModel

Next, we enforce the biased mixing restrictior. that people have contacts only
with individuals having stiilar sk behavior. The contact function
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Fig. 7.3a. The random mixing, c(r,r') = 1, risk-based model in Eqs. (5.4) and (5.5)
exhibits an initial exponential growth in infecteds. This behavior is not unlike the
models where an average risk behavior is used for all susceptibles S(t) = [S(t,r)dr,
I(t) = (I(t,r)dr ana A(t) = [A(t,r)dr.
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Fig. 7.3b. The majority of those infected and with AIDS at time t = 10 years are in
relatively low risk groups in the random-mixing model.
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Fig. 7.3c. The low risk susceptibles are infected early in the epidemic in the random
mixing model. The distribution of infecteds are shown at times 4, 6, 8, 10 and 12
years, indicated on the curves.

- r 4 (7.3)

0 1
15 U I ) (co-l)

and the acceptance function p(r, r') defined by Eqs. (5.7), (5.9) and (5.10) are used.
In the calculations shown in Fig. 7.4 we used the constants ¢co=11, ¢;=0.1 and
¢ =0.0125. Note that in contrast to the random-mixing example, the intecteds in
Fig. 7.5a grow as a quadratic polynomial as the saturation wave shown in Fig. 7.5¢
sweeps from high-risk into the lower-risk groups The growth of infecteds is much
slower: after 40 years the lowest-risk susceptibles have not yet become infected.
The current number cof AIDS cases at 40 years is about the same for the two
calculations however, and the number infected is actually greater. Thus, the
eventual impact of the epidemic may be just as devastating, depending on whether
it can continue to reach the larger, lower-risk populations or not.

Note in Fig 7.5b that the AIDS cases at time t = 10 years have a broader
distribution than do the infecteds and AIDS cases lag behind the infection wave.
This scenario 1s closer to the observed distribution of risk behavior in the early AIDS
cases than the unbiased mixing model Although this model is far better than the
unbiased random mixing model, we believe that it will be significantly improved 1!
we add a blend of biased mixing with a lower level of unbiased random mixing.
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Fig. 7.4a. The infecteds in the biased-mixing model in Eqs. (5.4), (5.7), (5.9), and
(5.10) with the contact function in Eq. (7.2) grows as a quadratic polynomial fcr
many years, after a brief transient due to the initial conditions.

Also, people do not maintain the samc¢ risk behavior forever. Therefore, we are
considering adding @ mechanism that will allow for some migration of risk
behavior.

Diffusion-Risk Mode!

The solution of the nonlinear diffusicn model in Eq. (5.11) in Fig. 7.5 is shown
for ¢ = 0.01 and the same initial conditions as the previous risk models. The
infected saturation wave in Fig. 7.5b is similar to the one shown in Fig. 7.5¢, which
this equation approximates. The major di.inction between the two models is the
lack of birth/death processes with the model in Eq. (5.11). This lack causes the
infected population to be larger because infecteds are never removed by AIDS, and
the larger infected population can then infect more susceptibles, causing a faster
epidemic. Also, new susceptibles are not created, causing an even more rapid
depletion of thc population. The epidemic is, however, polynomial in time, as was
the calculation in Fig. 7.5.
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Fig. 7.4b. The AIDS cases at time t = 10 years are centered at a substantially higher
risk behavior than in the random-mixing model. Note that the AIDS cases have a
much flatter distribution in risk than do the infecteds.
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Fig. 7.4c. The infected population forms a wave that sweeps from high risk
behavior groups into lower-risk groups. The distnibution of infecteds 1s shown every
5 years, at the times marked on the curves.
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Fig. 7.5b. The infected saturatic.n wave solution of the diffusion model sweeps into
lower-risk behavior similar to the solution in Fig. 7.5c¢.
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Vili.  SUMMARY

Mathernatical models for the spread of the AIDS virus are essential tools for
understanding the AIDS epidemic. Using models, we can choose desired sets of
competing forces and study their interactions to improve our understanding of the
essential relationships between the social and biological mechanisms that influence
the spread of the disease. The relative influence of various factors on the spread of
the epidemic, as well as the sensitivity to parameter variation, can be ascertained.
We can use this knowledge to help set priorities in research. Once the important
forces have been identified, we can develop models with which we can run
computer experiments comparing the outcome of different scenarios for the future.
Computer experiments can save time, resources, and lives, allowing us to predict the
future and acting as a conirol group for true experimental situations.

As a first step in developing a reliable model, we have used a simple
deterministic model to explore the impaict of various plausible shapes for the
infectivity as the time since infection increases. These calculations, which use an
average risk behavior, point out the importance of measuring the variability of the
infectiousness during the disease.

We have then used models that stratify the population according to the
number of sexual partners per year and have compared random partner choice with
a strong bias of like prefers like. The two mixing patterns result in radically
different epidemics. This difference indicates that much more must be known
about the interactions between pcople that lead to AIDS virus spread before it will
be possible to accurately predict the AIDS epidemic. The number of sexual partners
that people have, the partner selection process, and the amount and type of
contacts between partners must be uinderstood and correlated with sociological
information about the partners, such as how many partners your partners have.
Similarly, patterns of needle sharnng by drug users and the effect of this drug abuse
on sexual behavior strongly affect this epidemic.

In our analysis, we have focused on the imtial growth of the eprdemic. 1f we
are to predict where this epidenucis going, we must fully understand its transient
dynamics, including the response to changes in the environment of the epidemic.
The epidemic will not reach an equihbrium endemic state for a very long time,
partly because of the long conversion ttmes from infection to AIDS, during which a
person can transmit the virus  This time fadtor makes AIDS unhke different from
many other eprdemics, induding measles (Dictz and Schenzle, 1985), gonorrhea
(Hethcote and Yorke, 1984), and syphilis (Martun, 1928)  Another reason 1s that
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medical advances and changes in lifestyle will greatly modify the epidemic.
Education programs are being launched to promote condom use, having fewer
sexual partners, use of nonoxynol-9, the use of sterile needles, and similar practices.
The infectiousness and susceptibility of high-risk individuals in the heterosexual
community may be significantly reduced if programs are initiated to quickly identify
and treat other STDs. More people are being tested for antibodies to HIV and
counseled on the implications of the test results. Treatments are b«ing developed
that will prolong the lives of infected persons and perhaps lowe«r their infectivity. A
partially effective vaccine may eventually be developed. Models can be used to
investigatc the effects of each of these programs on the course of the epidemic only
if they can capture the transients of the epidemic.

In developing models, we must also decide on what questions we want to
answer. If public health officials are to attack this epidemic efficiently, then they
need to know which groups of people are most at risk of infection. Models that
distinguish between behavioral groups may help predict where the infection is
likely to go next. Our risk-based model is aimed toward this question, although it is
at present too simplistic to use for thiz purpose.

We can choose parameters in our preferential-mixing model that ensure that
AIDS cases in the numerical simulations match the past history in the United States.
Many other reasonable models can also quantitatively fit these cases but may
predict a very different future. Quantitatively matching past AIDS cases is not,
therefore, sufficient to distinguish between models. Qualitative discrepancies
between AIDS cases and the model need to be explained; for example, models with
initial exponential growth do not fit the U S. AIDS case data.

Models must be compared with data from studies on seroprevalence and risk
behavior versus infection. For example, we plan to compare our preferential mixing
model to the San Francisco Hepatitis B study. In this study of sexually active
homosexual men, which started in 1978, information on numbers of steady and
nonsteady sexual partners and numbers of contacts per partner was collected and a
series of serum samples were stored from a subset of the men. Many of these
samples have been tested for HIV, and so a correlation between sexual behavior and
time of infection can be made and compared with our model. Inconsistencies will
be seen, and the model will have to be revised to account for them.

Limitations of the data will greatly influence the capability of models to
accurately predict the future Many of the sensitive parameter values, such as the
magnitude and variability of ifectiousness, will be known accurately only after
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years of careful study. The current lack of a national AIDS data base center to
collect, analyze and distribute the available data is a severe block to our
understanding. We support establishing a data center that will encourage closer
collaborations between modelers and data collectors. The rmodelers will be more
driven to answer questions raised by data, and they will pose questions that will
suggest new data that should be collected and more effective sampling strategies
to reduce the variance in the results. Focusing on the data helps bridge the gap
between mathematical modelers and epidemiologists. Fortunately, the creation of
a national AIDS data base center is one aspect of the AIDS epidemic that can be
solved with appropriate funding.

Unlike many other diseases, HIV infections can persist (invisible and seemingly
dormant) in a few isolated individuals (with fow sexual activity) for long times. This
feature can cause sporadic loca! epidemics whenever the infected individual passes
the virus to a highly sexually active person. In these situations the virus can spread
raoidly without warn.ng, infecting a great many people. These sporadic events
should be modeled by a stochastic rather than a deterministic model, such as ours,
that smooths over the sporadic effects of such local random features. Because of
the long time between HIV infection and AIDS, this situation can be ascertained
only through vigilant HIV testing and case tracing.

Itis important to use models to understand the spreading in parts of the world
other than Western Europe and the United States. The current prevalence of HIV
infection in central Africa (up to 25% in metropolitan areas) raises serious political
and social concerns. Estimates that up to 26% of the adults in some regions in Asia,
Africa, and Latin America are annually infected with gonorrhea indicate not only
that behavior may be more conducive to spread of STDs there, but also that
cofactors are different. The presence in central Africa of cofactors, such as genitai
ulcers, and the lower general health of the population may be sufficient to explain
the rapid heterosexual spread of HIV infection there as opposed to the Unitad
States and Europe, or some aspect of sexual benavior may also be important. Also,
condoms and spermicides are used less frequently in these regions than they are in
the United States. We need to understand the regions for regional differences,
before we can predict the epidemicin Asia and Latin America.

In addition to transmission models like those described in this report, models
of the immune system can play a sigr ificant role in our understanding of the AIDS
epidemic By adding to understanding of the interactions of component parts ol
the immune system, these models can help guide vaccine and treatment
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developments. They may aid efforts to rid the infected celis of the virus so they can
live a longer, healthier, happier life. One puzzle that models might help unravel is
why T-4 cel! counts are gradually depleted when apparently less than 0.1% are
infected at any time and when the virus can stay dormant in such a cell for a long
time. Depletion may be the result of quick destruction by cytotoxic T-cells or
syncitia formation after infection, or it may be the result of excess HIV envelope
proteins binding to CD4 sites and marking them for destruction. Macrophages, a
significant fraction of which are infected in AIDS patients, probably provide a
relatively indestructible reservoir of virus in either scenario (Ho et al.,, 1987). Models
may help to distinguish between several plausible scenarios or suggest experiments.
Another puzzle is why chimpanzees, which can be infected with HIV but do not
develop AIDS, seem to be able to fix and complete the complement sequence, while
humans cannot (Weiss et al., 1986). Does complement effectively destroy the virus
in chimps before the autoimmune response destroys the T-4 cells? Could our
immune system be artifically stimulated to develop antibodies with a more
effective complement procedure? Mathematical models can organize our
understanding of the immune system in much the same way as the transmission
models described in this paper.

Major advances are required before either an effective antiviral therapy or an
effective vaccine is developed and becomes widely available. Thus, we have to
prepare for a long battle against the spread of the AIDS epidemic. Our computer
simulations ot the transmission dynamics of the epidemic will giva us insight into
how the epidemicis developing and will allow us to visualize the future.
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